This is the first study I’ve found that was interested in cataloging bacterial diversity among subclinical (or asymptomatic) infections. While they may be less threatening to the animal’s overall health, these infections have great significance in the world of animal agriculture, where they restrict growth (or in this case, milk production), and encourage the use of medicated feeds which in turn motivate people to purchase organic products. Identifying the risk factors and causes of these infections could therefore impact both the management of food animals, and any legislation defining how and when medications can be used. With that in mind, let’s jump back into mastitis, and everyone’s favorite gram-positive, S. aureus.
S. aureus is one of many bacteria that cause mastitis, however it is of additional importance as it often causes chronic or recurring cases of mastitis that result in unusable milk and discomfort of the animal. In this study, the authors investigated 11 dairy farms where they expected to find S. aureus, based on previous culture findings at each farm. They defined cows that they took milk samples from as having new or chronic infections based on somatic cell counts (SCC) in the milk. If values were >200,000 cells/mL for the month of collection the infections were considered new, whereas if cell counts were >200,000 cells/mL for more than 2 months, those infections were considered chronic. They took a single milk sample from each teat of the infected cows, for a total of 1,354 mammary glands from 350 cows.
Pulse field electrophoresis was used to identify the different subspecies/serotypes/pulsotypes (pick your word), and to identify the genes coding for enterotoxin production that had been amplified by PCR. An ELISA test was used last to detect the presence of several enterotoxins.
As the majority of exposure to enterotoxins produced my S. aureus is through milk and dairy products, subclinical infections of S. aureus are very important as a food safety control point. Unlike cows with clinical cases that are removed from production, cows with subclinical infections continue to contribute milk that makes it to the consumer, provided that the SSC is <750,000 cells/mL. The authors were unable to detect a large amount of enterotoxin in their samples, but many of the pulsotypes contained the genes coding for their production. Other studies cited by the author report the common presence of these genes in S. aureus samples, but expression rates are inconclusive or unexplored. This means that theoretically, subclinical cows could be introducing these bacterial toxins into consumer milk in small amounts.
It’s difficult to tell how significant these amounts might be. Toxic doses of one of the enterotoxins, “Toxic Shock Syndrome Toxin 1”, has been found to be as low as 100 micrograms/Kg in miniature pigs. The concentrations that may be introduced through contaminated milk, and the bioavailability when ingested, should be explored. Takeuchi et al. (1998) were able to detect the presence of TSST- 1 in bulk milk tanks, but no one has yet to quantify the amounts of TSST- 1 potentially present in pasteurized milk.
All that being said, what good is this new information? It can be argued that because these infections are chronic and/or subclinical that these strains of S. aureus aren’t very pathogenic, but they’re still causing inflammation. By identifying common serotypes and factors leading to the subclinical infection of a herd, perhaps there are simple management changes that can prevent infection. Milking is an almost sterile procedure, with sanitation of the teats both prior and following milking, wearing gloves, and forestripping; but there could be other tricks that would target risk factors related to the spread of subclinical pathogens, especially those that are specific to a location.
Bulanda M, Zaleska M, Mandel L, Talafantova M, Travnicek J, Kunstmann G, Mauff G, Pulverer G, & Heczko PB (1989). Toxicity of staphylococcal toxic shock syndrome toxin 1 for germ-free and conventional piglets. Reviews of infectious diseases, 11 Suppl 1 PMID: 2928643
Oliveira L, Rodrigues AC, Hulland C, & Ruegg PL (2011). Enterotoxin production, enterotoxin gene distribution, and genetic diversity of Staphylococcus aureus recovered from milk of cows with subclinical mastitis. American journal of veterinary research, 72 (10), 1361-8 PMID: 21962279
Takeuchi, S., Ishiguro, K., Ikegami, M., Kaidoh, T., & Hayakawa, Y. (1998). Production of toxic shock syndrome toxin by Staphylococcus aureus isolated from mastitic cow’s milk and farm bulk milk Veterinary Microbiology, 59 (4), 251-258 DOI: 10.1016/S0378-1135(96)01253-9